Transmission dynamics of a novel HIV/AIDS model through a higher-order Galerkin time discretization scheme

Author:

Attaullah ,Zeb Kamil,Khan Ilyas,Ahmad Riaz,Eldin Sayed M.

Abstract

AbstractThere are numerous contagious diseases caused by pathogenic microorganisms, including bacteria, viruses, fungi, and parasites, that have the propensity to culminate in fatal consequences. A communicable disease is an illness caused by a contagion agent or its toxins and spread directly or indirectly to a susceptible animal or human host by an infected person, animal, vector, or immaterial environment. Human immunodeficiency virus (HIV) infection, hepatitis A, B, and C, and measles are all examples of communicable diseases. Acquired immunodeficiency syndrome (AIDS) is a communicable disease caused by HIV infection that has become the most severe issue facing humanity. The research work in this paper is to numerically explore a mathematical model and demonstrate the dynamics of HIV/AIDS disease transmission using a continuous Galerkin–Petrov time discretization of a higher-order scheme, specifically the cGP(2)-scheme. Depict a graphical and tabular comparison between the outcomes of the mentioned scheme and those obtained through other classical schemes that exist in the literature. Further, a comparison is performed relative to the well-known fourth-order Ruge–Kutta (RK4) method with different step sizes. By contrast, the suggested approach provided more accurate results with a larger step size than RK4 with a smaller step size. After validation and confirmation of the suggested scheme and code, we implement the method to the extended model by introducing a treatment rate and show the impact of various non-linear source terms for the generation of new cells. We also determined the basic reproduction number and use the Routh-Hurwitz criterion to assess the stability of disease-free and unique endemic equilibrium states of the HIV model.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3