Proteomic and phosphoproteomic profiling of shammah induced signaling in oral keratinocytes

Author:

Patil Shankargouda,Bhat Mohd Younis,Advani Jayshree,Mohan Sonali V.,Babu Niraj,Datta Keshava K.,Subbannayya Tejaswini,Rajagopalan Pavithra,Bhat Firdous A.,Al-hebshi Nezar,Sidransky David,Gowda Harsha,Chatterjee Aditi

Abstract

AbstractShammah is a smokeless tobacco product often mixed with lime, ash, black pepper and flavorings. Exposure to shammah has been linked with dental diseases and oral squamous cell carcinoma. There is limited literature on the prevalence of shammah and its role in pathobiology of oral cancer. In this study, we developed a cellular model to understand the effect of chronic shammah exposure on oral keratinocytes. Chronic exposure to shammah resulted in increased proliferation and invasiveness of non-transformed oral keratinocytes. Quantitative proteomics of shammah treated cells compared to untreated cells led to quantification of 4712 proteins of which 402 were found to be significantly altered. In addition, phosphoproteomics analysis of shammah treated cells compared to untreated revealed hyperphosphorylation of 36 proteins and hypophosphorylation of 83 proteins (twofold, p-value ≤ 0.05). Bioinformatics analysis of significantly altered proteins showed enrichment of proteins involved in extracellular matrix interactions, necroptosis and peroxisome mediated fatty acid oxidation. Kinase-Substrate Enrichment Analysis showed significant increase in activity of kinases such as ROCK1, RAF1, PRKCE and HIPK2 in shammah treated cells. These results provide better understanding of how shammah transforms non-neoplastic cells and warrants additional studies that may assist in improved early diagnosis and treatment of shammah induced oral cancer.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3