Comparing ANI-2x, ANI-1ccx neural networks, force field, and DFT methods for predicting conformational potential energy of organic molecules

Author:

Rezaee Mozafar,Ekrami Saeid,Hashemianzadeh Seyed Majid

Abstract

AbstractIn this study, the conformational potential energy surfaces of Amylmetacresol, Benzocaine, Dopamine, Betazole, and Betahistine molecules were scanned and analyzed using the neural network architecture ANI-2 × and ANI-1ccx, the force field method OPLS, and density functional theory with the exchange-correlation functional B3LYP and the basis set 6-31G(d). The ANI-1ccx and ANI-2 × methods demonstrated the highest accuracy in predicting torsional energy profiles, effectively capturing the minimum and maximum values of these profiles. Conformational potential energy values calculated by B3LYP and the OPLS force field method differ from those calculated by ANI-1ccx and ANI-2x, which account for non-bonded intramolecular interactions, since the B3LYP functional and OPLS force field weakly consider van der Waals and other intramolecular forces in torsional energy profiles. For a more comprehensive analysis, electronic parameters such as dipole moment, HOMO, and LUMO energies for different torsional angles were calculated at two levels of theory, B3LYP/6-31G(d) and ωB97X/6-31G(d). These calculations confirmed that ANI predictions are more accurate than density functional theory calculations with B3LYP functional and OPLS force field for determining potential energy surfaces. This research successfully addressed the challenges in determining conformational potential energy levels and shows how machine learning and deep neural networks offer a more accurate, cost-effective, and rapid alternative for predicting torsional energy profiles.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3