DDCNN-F: double decker convolutional neural network 'F' feature fusion as a medical image classification framework

Author:

Veeramani Nirmala,Jayaraman Premaladha,Krishankumar Raghunathan,Ravichandran Kattur Soundarapandian,Gandomi Amir H.

Abstract

AbstractMelanoma is a severe skin cancer that involves abnormal cell development. This study aims to provide a new feature fusion framework for melanoma classification that includes a novel ‘F’ Flag feature for early detection. This novel ‘F’ indicator efficiently distinguishes benign skin lesions from malignant ones known as melanoma. The article proposes an architecture that is built in a Double Decker Convolutional Neural Network called DDCNN future fusion. The network's deck one, known as a Convolutional Neural Network (CNN), finds difficult-to-classify hairy images using a confidence factor termed the intra-class variance score. These hirsute image samples are combined to form a Baseline Separated Channel (BSC). By eliminating hair and using data augmentation techniques, the BSC is ready for analysis. The network's second deck trains the pre-processed BSC and generates bottleneck features. The bottleneck features are merged with features generated from the ABCDE clinical bio indicators to promote classification accuracy. Different types of classifiers are fed to the resulting hybrid fused features with the novel 'F' Flag feature. The proposed system was trained using the ISIC 2019 and ISIC 2020 datasets to assess its performance. The empirical findings expose that the DDCNN feature fusion strategy for exposing malignant melanoma achieved a specificity of 98.4%, accuracy of 93.75%, precision of 98.56%, and Area Under Curve (AUC) value of 0.98. This study proposes a novel approach that can accurately identify and diagnose fatal skin cancer and outperform other state-of-the-art techniques, which is attributed to the DDCNN ‘F’ Feature fusion framework. Also, this research ascertained improvements in several classifiers when utilising the ‘F’ indicator, resulting in the highest specificity of + 7.34%.

Funder

Óbuda University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3