Flow-induced oscillations of vocal-fold replicas with tuned extensibility and material properties

Author:

Luizard Paul,Bailly Lucie,Yousefi-Mashouf Hamid,Girault Raphaël,Orgéas Laurent,Henrich Bernardoni Nathalie

Abstract

AbstractHuman vocal folds are highly deformable non-linear oscillators. During phonation, they stretch up to 50% under the complex action of laryngeal muscles. Exploring the fluid/structure/acoustic interactions on a human-scale replica to study the role of the laryngeal muscles remains a challenge. For that purpose, we designed a novel in vitro testbed to control vocal-folds pre-phonatory deformation. The testbed was used to study the vibration and the sound production of vocal-fold replicas made of (i) silicone elastomers commonly used in voice research and (ii) a gelatin-based hydrogel we recently optimized to approximate the mechanics of vocal folds during finite strains under tension, compression and shear loadings. The geometrical and mechanical parameters measured during the experiments emphasized the effect of the vocal-fold material and pre-stretch on the vibration patterns and sounds. In particular, increasing the material stiffness increases glottal flow resistance, subglottal pressure required to sustain oscillations and vibratory fundamental frequency. In addition, although the hydrogel vocal folds only oscillate at low frequencies (close to 60 Hz), the subglottal pressure they require for that purpose is realistic (within the range 0.5–2 kPa), as well as their glottal opening and contact during a vibration cycle. The results also evidence the effect of adhesion forces on vibration and sound production.

Funder

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3