Chaotic dynamics in X-ray free-electron lasers with an optical undulator

Author:

Abbasi E.,Jafari S.

Abstract

AbstractIn this work, the chaotic motions of relativistic electrons in X-ray free-electron lasers are investigated using an optical undulator in the presence of a magnetized ion-channel background. To miniaturize X-ray light sources, the optical undulator is a promising concept. The optical undulator provides higher optical gain than conventional magnetostatic undulators due to its micrometer wavelength. In addition, it reduces the required electron beam energy from several GeV to the multi-MeV range to produce X-ray pulses. The interaction of an optical undulator with an intense relativistic electron beam is a highly non-linear phenomenon that can lead to chaotic dynamics. At synchrotron radiation sources, the possibility of chaos control for X-ray FELs can be critical for certain classes of experimental studies. The equations of motion for a relativistic electron propagating through the optical undulator in the presence of a magnetized ion-channel can be derived from the Hamiltonian of the interaction region. Simulation results revealed that the intensity of the perturbation route from orderly behavior to chaos depends on the beam density, axial magnetic field strength, ion-channel density parameter, and pump laser undulator. Specific values of parameters were obtained for the transition from regular to chaotic paths. Bifurcation diagrams of the system were plotted to demonstrate the origin of chaos at a critical point, and Poincaré maps were created to distinguish between chaotic and orderly motions of electrons. The proposed new scheme can help to improve X-ray FELs, which have potential usages in basic sciences, medicine, and industry.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3