Exploring biomarkers and molecular mechanisms of Type 2 diabetes mellitus promotes colorectal cancer progression based on transcriptomics

Author:

Luo Simin,Zhu Yuhong,Guo Zhanli,Zheng Chuan,Fu Xi,You Fengming,Li XuekeORCID

Abstract

Abstract Type 2 diabetes mellitus (T2DM) has been confirmed as an independent risk factor for colorectal cancer (CRC) in many studies. However, the mechanisms behind T2DM’s role in the progression of CRC remain unclear. This study aims to explore the potential biomarkers and molecular mechanisms involved in T2DM-promoted CRC progression. The limma package was used to identify differentially expressed genes in tumor tissue from CRC patients with or without T2DM. The key biological processes were screened by gene ontology and gene set enrichment analysis. A diagnostic model for co-morbidities was constructed by logistic regression model with least absolute shrinkage and selection operator (Lasso) regularization method. The diagnostic performance was assessed by supplementing external datasets to draw ROC curves on the diagnostic model. The diagnostic model was further screened for key genes by prognostic analysis. The relationship of key genes with immune cells and other cells was evaluated by immune infiltration algorithm and single-cell transcription analysis. Drug prediction was performed by cMAP and the obtained drugs were molecularly docked with the key genes. The differentially expressed genes of T2DM-promoted CRC progression were mainly enriched to O-linked glycosylation-related processes. The diagnostic model constructed based on Lasso logistic regression had good diagnostic performance (AUC > 0.8). COX11 was the key gene for co-morbidities: in tumor tissues, COX11 expression was significantly higher than that in normal colon tissues. However, COX11 gene expression was significantly lower in patients with comorbidities than in patients without T2DM in tumor tissue. External datasets confirmed from both mRNA and protein expression levels that low COX11 expression was significantly associated with poor CRC prognosis. Immune infiltration analysis suggested that its expression related to the proportion of M2 macrophages. Single-cell transcriptome analysis revealed a close association of COX11 expression with endothelial cells and macrophages. The top4 drugs predicted bound well to COX11. Our study revealed that the pathogenesis of T2DM-promoted CRC progression related to O-linked glycosylation. We constructed a diagnostic model for T2DM-CRC co-morbidity. Meanwhile, we identified COX11 as a potential immune-related molecular marker closely associated with T2DM-promoted CRC progression. These mechanisms and molecular markers may provide new ideas for further studies of T2DM-promoted CRC progression and contribute to drug discovery for the treatment of co-morbidities.

Funder

Fund for development of Science and Technology of Hospital of Chengdu University of TCM

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3