Author:
Ghazi Mirza Ghazanfarullah,Sharma Surya Prasad,Tuboi Chongpi,Angom Sangeeta,Gurumayum Tennison,Nigam Parag,Hussain Syed Ainul
Abstract
AbstractEld's deer (Rucervus eldii) with three recognised subspecies (R. e. eldii, R. e. thamin, and R. e. siamensis) represents one of the most threatened cervids found in Southeast Asia. The species has experienced considerable range contractions and local extinctions owing to habitat loss and fragmentation, hunting, and illegal trade across its distribution range over the last century. Understanding the patterns of genetic variation is crucial for planning effective conservation strategies. This study investigated the phylogeography, divergence events and systematics of Eld's deer subspecies using the largest mtDNA dataset compiled to date. We also analysed the genetic structure and demographic history of R. e. eldii using 19 microsatellite markers. Our results showed that R. e. siamensis exhibits two divergent mtDNA lineages (mainland and Hainan Island), which diverged around 0.2 Mya (95% HPD 0.1–0.2), possibly driven by the fluctuating sea levels of the Early Holocene period. The divergence between R. e. eldii and R. e. siamensis occurred around 0.4 Mya (95% HPD 0.3–0.5), potentially associated with the adaptations to warm and humid climate with open grassland vegetation that predominated the region. Furthermore, R. e. eldii exhibits low levels of genetic diversity and small contemporary effective population size (median = 7, 4.7–10.8 at 95% CI) with widespread historical genetic bottlenecks which accentuates its vulnerability to inbreeding and extinction. Based on the observed significant evolutionary and systematic distance between Eld’s deer and other species of the genus Rucervus, we propose to classify Eld's deer (Cervus eldii) in the genus Cervus, which is in congruent with previous phylogenetic studies. This study provides important conservation implications required to direct the ongoing population recovery programs and planning future conservation strategies.
Funder
National Compensatory Afforestation Fund Management and Planning Advisory Council (NCAC), Ministry of Environment, Forests and Climate Change, Government of India.
Publisher
Springer Science and Business Media LLC
Reference103 articles.
1. Banks, S. C. et al. How does ecological disturbance influence genetic diversity?. Trends Ecol. Evol. 28, 670–679 (2013).
2. Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against inbred soay sheep in a free living island population. Evolution 53, 1259–1267 (1999).
3. Hedrick, P. W. & Fredrickson, R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Cons. Genet. 11, 615–626 (2010).
4. Frankham, R. Genetics and extinction. Biol. Cons. 126, 131–140 (2005).
5. Markert, J. A. et al. Population genetic diversity and fitness in multiple environments. BMC. Evol Biol. 10, 205 (2010).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献