Predicting odor from vibrational spectra: a data-driven approach

Author:

Ameta Durgesh,Behera Laxmidhar,Chakraborty Aniruddha,Sandhan Tushar

Abstract

AbstractThis study investigates olfaction, a complex and not well-understood sensory modality. The chemical mechanism behind smell can be described by so far proposed two theories: vibrational and docking theories. The vibrational theory has been gaining acceptance lately but needs more extensive validation. To fill this gap for the first time, we, with the help of data-driven classification, clustering, and Explainable AI techniques, systematically analyze a large dataset of vibrational spectra (VS) of 3018 molecules obtained from the atomistic simulation. The study utlizes image representations of VS using Gramian Angular Fields and Markov Transition Fields, allowing computer vision techniques to be applied for better feature extraction and improved odor classification. Furthermore, we fuse the PCA-reduced fingerprint features with image features, which show additional improvement in classification results. We use two clustering methods, agglomerative hierarchical (AHC) and k-means, on dimensionality reduced (UMAP, MDS, t-SNE, and PCA) VS and image features, which shed further insight into the connections between molecular structure, VS, and odor. Additionally, we contrast our method with an earlier work that employed traditional machine learning on fingerprint features for the same dataset, and demonstrate that even with a representative subset of 3018 molecules, our deep learning model outperforms previous results. This comprehensive and systematic analysis highlights the potential of deep learning in furthering the field of olfactory research while confirming the vibrational theory of olfaction.

Funder

IKS Division of the Ministry of Education (MoE), Government of India to the IKS centers/Research Projects/Internships/Conferences/Workshops

TCS Research Scholarship

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3