A pipeline for the fully automated estimation of continuous reference intervals using real-world data

Author:

Ammer Tatjana,Schützenmeister André,Prokosch Hans-Ulrich,Rauh Manfred,Rank Christopher M.,Zierk Jakob

Abstract

AbstractReference intervals are essential for interpreting laboratory test results. Continuous reference intervals precisely capture physiological age-specific dynamics that occur throughout life, and thus have the potential to improve clinical decision-making. However, established approaches for estimating continuous reference intervals require samples from healthy individuals, and are therefore substantially restricted. Indirect methods operating on routine measurements enable the estimation of one-dimensional reference intervals, however, no automated approach exists that integrates the dependency on a continuous covariate like age. We propose an integrated pipeline for the fully automated estimation of continuous reference intervals expressed as a generalized additive model for location, scale and shape based on discrete model estimates using an indirect method (refineR). The results are free of subjective user-input, enable conversion of test results into z-scores and can be integrated into laboratory information systems. Comparison of our results to established and validated reference intervals from the CALIPER and PEDREF studies and manufacturers’ package inserts shows good agreement of reference limits, indicating that the proposed pipeline generates high-quality results. In conclusion, the developed pipeline enables the generation of high-precision percentile charts and continuous reference intervals. It represents the first parameter-less and fully automated solution for the indirect estimation of continuous reference intervals.

Funder

Universitätsklinikum Erlangen

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3