Sub-terahertz silicon-based on-chip absorption spectroscopy using thin-film model for biological applications

Author:

Hosseini Farahabadi Seyed Ali,Entezami Milad,Abouali Hesam,Amarloo Hadi,Poudineh Mahla,Safavi-Naeini Safieddin

Abstract

AbstractSpectroscopy in the sub-terahertz (sub-THz) range of frequencies has been utilized to study the picosecond dynamics and interaction of biomolecules. However, widely used free-space THz spectrometers are typically limited in their functionality due to low signal-to-noise ratio and complex setup. On-chip spectrometers can revolutionize THz spectroscopy allowing integration, compactness, and low-cost fabrication. In this paper, a low-loss silicon-based platform is proposed for on-chip sub-THz spectroscopy. Through functionalization of silicon chip and immobilization of bio-particles, we demonstrate the ability to characterize low-loss nano-scale biomolecules across the G-band (0.14–0.22 THz). We also introduce an electromagnetic thin-film model to account for the loading effect of the immobilized biomolecules, i.e. dehydrated streptavidin and immunoglobulin antibody, as two key molecules in the biosensing discipline. The proposed platform was fabricated using a single mask micro-fabrication process, and then measured by a vector network analyzer (VNA), which offers high dynamic range and high spectral resolution measurements. The proposed planar platform is general and paves the way towards low-loss, cost-effective and integrated sub-THz biosensors for the detection and characterization of biomolecules.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-Conductor Ports Enabling Broadband Operation of Substrateless Microscale Silicon Waveguides;IEEE Transactions on Terahertz Science and Technology;2024-07

2. 327 Gbps THz silicon photonic interconnect with sub-λ bends;Applied Physics Letters;2023-10-23

3. Compact and Robust Silicon Waveguide to Hollow Metallic Waveguide Coupling using a Quarter-Wave Dielectric Slot Waveguide for mmW and THz Waves;2023 International Topical Meeting on Microwave Photonics (MWP);2023-10-15

4. Broadband mm-wave sealed-volume liquid bio-sensor exploiting tailored delocalization of modal fields in a micro-scale silicon waveguide;2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz);2023-09-17

5. Integrated Ultra-Broadband THz Photodiode with Silicon Rod Waveguide Interface;2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz);2023-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3