Comparative genomics of a novel clade shed light on the evolution of the genus Erysipelothrix and characterise an emerging species

Author:

Grazziotin Ana Laura,Vidal Newton M.,Hoepers Patricia Giovana,Reis Thais F. M.,Mesa Dany,Caron Luiz Felipe,Ingberman Max,Beirão Breno C. B.,Zuffo João Paulo,Fonseca Belchiolina Beatriz

Abstract

AbstractErysipelothrix sp. isolates obtained from a deadly outbreak in farmed turkeys were sequenced and compared to representatives of the genus. Phylogenetic trees—supported by digital DNA:DNA hybridization and Average Nucleotide Identity—revealed a novel monophyletic clade comprising isolates from pigs, turkeys, and fish, including isolates previously described as E. sp. Strain 2. Genes coding for the SpaC protein, typically found in E. sp. Strain 2, were detected in all isolates of the clade. Therefore, we confirm E. sp. Strain 2 represents a unique species, that despite its official name “Erysipelothrix piscisicarius” (meaning a killer of fish), may be isolated from a broad host range. Core genome analysis showed that the pathogenic species of this genus, E. rhusiopathiae and the clade E. sp. Strain 2, are enriched in core functionalities related to nutrient uptake and transport, but not necessarily homologous pathways. For instance, whereas the aerobic DctA transporter may uptake C4-dicarboxylates in both species, the anaerobic DcuC transporter is exclusive of the E. sp. Strain 2. Remarkably, the pan-genome analysis uncovered that genes related to transport and metabolism, recombination and repair, translation and transcription in the fish isolate, within the novel clade, have undergone a genomic reduction through pseudogenization. This reflects distinct selective pressures shaping the genome of species and strains within the genus Erysipelothrix while adapting to their respective niches.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3