CFD modeling and simulation of benzyl alcohol oxidation coupled with hydrogen production in a continuous-flow photoelectrochemical reactor

Author:

Hanamorn Thorfhan,Vas-Umnuay Paravee

Abstract

AbstractVarious conversion routes of biomass and its derivative compounds into high-value products has attracted attention from researchers recently. Among these, a solar-driven photoelectrochemical (PEC) oxidation approach of biomass alcohols to aldehydes is particularly of great interest for the potential applications because the reaction is selective and simultaneously accompanied with hydrogen production. Here, we propose a simulation of selective oxidation of benzyl alcohol into benzaldehyde coupled with hydrogen production in a 2-dimensional continuous-flow PEC reactor using COMSOL Multiphysics (5.6). In order to develop and fabricate a simple yet efficient reactor for a practical use, it is crucial to investigate the effects of operating and design parameters of the reactor on the reactions. Our studies demonstrated that the main contributions to product formation were the electrolyte flow velocity and the width of electrolyte channels. The optimized design parameter exhibited good photoelectrochemical performance with uniform potential distribution within the channels which served diffusion of neutral and charged species and electrochemical reaction. The maximum conversion of benzyl alcohol in this work was 48.25% with 100% selectivity of benzaldehyde. These findings are key for the design of the continuous-flow PEC reactor that can be applied to any series of biomass conversion reactions under mild conditions.

Funder

National Research Council of Thailand

Thailand Science research and Innovation Fund Chulalongkorn University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3