Thermal reaction products and formation pathways of two monoterpenes under in situ thermal desorption conditions that mimic vaping coil temperatures

Author:

Niu JianjunORCID,Zhu JipingORCID

Abstract

AbstractVaping has become more popular and different brands and types of vaping devices have rapidly emerged. However, little is known about the potential health risks of human inhalation exposures to the volatile chemicals in the vapour, which includes both directly vaporised components of vaping liquid and their reaction products formed during vaping processes. This study investigated reaction products of two monoterpenes (α-pinene and terpinolene) that are used as flavouring agents in vaping liquids with a focus on the identification of reaction products and their formation pathways. The thermal desorption was conducted under an in situ condition that is in the range of heating coil temperature in vaping by thermally desorbing the chemicals at a temperature range of 100–300 °C. Additional clean air was introduced during the thermal desorption. 36 and 29 reaction products were identified from α-pinene and terpinolene, respectively, at a relative concentration of 0.01% and greater in the desorbed mixture. 3-Carene was the dominant reaction product of α-pinene, while reaction products of terpinolene was dominated by p-isopropenyltoluene. Several reaction pathways including ring opening, allylic oxidation, cyclo-etherification, Wagner–Meerwein rearrangement, epoxidation, cleavage and removal of partial structure, and dehydration were involved in the formation of various reaction products. These pathways and resulting relative concentrations of residual parent compound and reaction products were influenced by both temperature and amount of air present during thermal desorption. The study results demonstrate possible existence of reaction products from thermally labile chemicals like monoterpenes in vaping aerosols and can help inform policies regulating vaping devices and products to protect public health.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3