Bioabsorbable nerve conduits three-dimensionally coated with human induced pluripotent stem cell-derived neural stem/progenitor cells promote peripheral nerve regeneration in rats

Author:

Onode Ema,Uemura Takuya,Takamatsu Kiyohito,Yokoi Takuya,Shintani Kosuke,Hama Shunpei,Miyashima Yusuke,Okada Mitsuhiro,Nakamura Hiroaki

Abstract

AbstractPeripheral nerve regeneration using nerve conduits has been less effective than autogenous nerve grafts. To overcome this hurdle, we developed a tissue-engineered nerve conduit coated with mouse induced pluripotent stem cell (iPSC)-derived neurospheres, for the first time, which accelerated nerve regeneration in mice. We previously demonstrated the long-term efficacy and safety outcomes of this hybrid nerve conduit for mouse peripheral nerve regeneration. In this study, we investigated the therapeutic potential of nerve conduits coated with human iPSC (hiPSC)-derived neurospheres in rat sciatic nerve defects, as a translational preclinical study. The hiPSC-derived quaternary neurospheres containing neural stem/progenitor cells were three-dimensionally cultured within the nerve conduit (poly l-lactide and polycaprolactone copolymer) for 14 days. Complete 5-mm defects were created as a small size peripheral nerve defect in sciatic nerves of athymic nude rats and reconstructed with nerve conduit alone (control group), nerve conduits coated with hiPSC-derived neurospheres (iPS group), and autogenous nerve grafts (autograft group) (n = 8 per group). The survival of the iPSC-derived neurospheres was continuously tracked using in vivo imaging. At 12 weeks postoperatively, motor and sensory function and histological nerve regeneration were evaluated. Before implantation, the hiPSC-derived quaternary neurospheres that three-dimensional coated the nerve conduit were differentiated into Schwann-like cells. The transplanted hiPSC-derived neurospheres survived for at least 56 days after implantation. The iPS group showed non-significance higher sensory regeneration than the autograft group. Although there was no actual motor functional nerve regeneration in the three groups: control, iPS, and autograft groups, the motor function in the iPS group recovered significantly better than that in the control group, but it did not recover to the same level as that in the autograft group. Histologically, the iPS group demonstrated significantly higher axon numbers and areas, and lower G-ratio values than the control group, whereas the autograft group demonstrated the highest axon numbers and areas and the lowest G-ratio values. Nerve conduit three-dimensionally coated with hiPSC-derived neurospheres promoted axonal regeneration and functional recovery in repairing rat sciatic nerve small size defects. Transplantation of hiPSC-derived neurospheres with nerve conduits is a promising clinical iPSC-based cell therapy for the treatment of peripheral nerve defects.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3