Amoxicillin impact on pathophysiology induced by short term high salt diet in mice

Author:

Kumar Suresh,Perumal Nagarajan,Yadav P. K.,Pandey Ramendra Pati,Chang Chung-Ming,Raj V. Samuel

Abstract

AbstractCurrent evidence emerging from both human and animal models confirms that high-salt diet consumption over a period modulates the gut ecology and subsequently accelerates the development of the pathophysiology of many metabolic diseases. The knowledge of short-term intake of a high-salt diet (HSD) on gut microbiota and their role in the progression of metabolic pathogenesis and the consequence of a typical course of common antibiotics in this condition has yet not been investigated. The present study elicited this knowledge gap by studying how the gut microbiota profile changes in mice receiving HSD for a short period followed by Amoxicillin treatment on these mice in the last week to mimic a typical treatment course of antibiotics. In this study, we provided a standard chow diet (CD) and HSD for 3 weeks, and a subset of these mice on both diets received antibiotic therapy with Amoxicillin in the 3rd week. We measured the body weight of mice for 3 weeks. After 21 days, all animals were euthanised and subjected to a thorough examination for haemato-biochemical, histopathological, and 16S rRNA sequencing, followed by bioinformatics analysis to determine any changes in gut microbiota ecology. HSD exposure in mice for short duration even leads to a significant difference in the gut ecology with enrichment of specific gut microbiota crucially linked to developing the pathophysiological features of metabolic disease-related inflammation. In addition, HSD treatment showed a negative impact on haemato-biochemical parameters. However, Amoxicillin treatment in HSD-fed mice restored the blood-biochemical markers near to control values and reshaped gut microbiota known for improving the pathophysiological attributes of metabolic disease related inflammation. This study also observed minimal and insignificant pathological changes in the heart, liver, and kidney in HSD-fed mice.

Funder

Chang Gung University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3