Synthesis of vinyl ester resin-carrying PVDF green nanofibers for self-healing applications

Author:

Naga Kumar C.,Prabhakar M. N.,Song Jung-il

Abstract

AbstractSelf-healing on the engineering applications is smart, decisive research for prolonging the life span of the materials and the innovations have been mounting still smarter. Connecting to advancements in self-healing carriers, in altering the chemical structure by optimizing the brittleness for self-healing performance and introducing the bio-degradability, for the first time TPS was blended to PVDF for the synthesis of nanofibers, as carriers of a vinyl ester (VE) resin (medication), by the coaxial electrospinning technique. TPS was mechanically mixed with PVDF base polymer and optimized the TPS content (10 wt%) based on mechanical performance. The novel nanofibers were characterized via field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy, X-ray diffraction, thermal, moisture analysis, and a mechanical line with FESEM and energy-dispersive X-ray analysis studied the self-healing. The TPS/PVDF fibers having hydrogen bonding and increased the crystallinity (40.57 → 44.12%) and the diameter (115 → 184 nm) along with the surface roughness of the fibers with increasing the TPS content. Microanalysis presented the flow-out of the VE resin at the scratched parts in the pierced fibers; interestingly, after some time, the etched part was cured automatically by the curing of the spread resin. Mechanical stretching of the nanofibers in the tensile tests up in the plastic region showed a decrement in the elasticity (TPS/PVDF fibers) and an increment in the brittle nature (cured VE resin) with the increase in Young’s modulus at each stretching, clearly elucidating the healing performance.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3