Identification and verification of three autophagy-related genes as potential biomarkers for the diagnosis of psoriasis

Author:

Zou Ailing,Chen Yongjun,Liu Tangsheng,Yang Ting,Zhou Bei

Abstract

AbstractPsoriasis vulgaris is the most common form of the four clinical types. However, early diagnosis of psoriasis vulgaris is difficult due to the lack of effective biomarkers. The aim of this study was to screen potential biomarkers for the diagnosis of psoriasis. In our study, we downloaded the original data from GSE30999 and GSE41664, and the autophagy-related genes list from human autophagy database to identify differentially expressed autophagy-related genes (DERAGs) by R software. Then Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for DERAGs. DERAGs were validated by the other four databases (GSE13355, GSE14905, GSE6710, and GSE55201) to screen biomarkers with high diagnostic value for the early diagnosis of psoriasis vulgaris. Finally, DERAGs were verified in our clinical blood samples by ELISA. A total of 12 DERAGs were identified between 123 paired non-lesional and lesional skin samples from patients with psoriasis vulgaris. GO and KEGG enrichment analysis indicated the TORC2 complex was more enriched and the NOD-like receptor signaling pathway was mostly enriched. Three autophagy-related genes (BIRC5, NAMPT and BCL2) were identified through bioinformatics analysis and verified by ELISA in clinical blood samples. And these genes showed high diagnostic value for the early diagnosis of psoriasis vulgaris. We identified three autophagy-related genes (BIRC5, NAMPT and BCL2) with high diagnostic value for the early diagnosis of psoriasis vulgaris through bioinformatics analysis and clinical samples. Therefore, we proposed that BIRC5, NAMPT and BCL2 may be as potential biomarkers for the early diagnosis of psoriasis vulgaris. In addition, BIRC5, NAMPT and BCL2 may affect the development of psoriasis by regulating autophagy.

Funder

Nature Science Foundation of Hubei Province

Scientific Research Project of Hubei Polytechnic University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3