Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images

Author:

Gupta Aashish C.,Cazoulat Guillaume,Al Taie Mais,Yedururi Sireesha,Rigaud Bastien,Castelo Austin,Wood John,Yu Cenji,O’Connor Caleb,Salem Usama,Silva Jessica Albuquerque Marques,Jones Aaron Kyle,McCulloch Molly,Odisio Bruno C.,Koay Eugene J.,Brock Kristy K.

Abstract

AbstractManual delineation of liver segments on computed tomography (CT) images for primary/secondary liver cancer (LC) patients is time-intensive and prone to inter/intra-observer variability. Therefore, we developed a deep-learning-based model to auto-contour liver segments and spleen on contrast-enhanced CT (CECT) images. We trained two models using 3d patch-based attention U-Net ($${{\text{M}}}_{{\text{paU}}-{\text{Net}}})$$ M paU - Net ) and 3d full resolution of nnU-Net ($${{\text{M}}}_{{\text{nnU}}-{\text{Net}}})$$ M nnU - Net ) to determine the best architecture ($${\text{BA}})$$ BA ) . BA was used with vessels ($${{\text{M}}}_{{\text{Vess}}})$$ M Vess ) and spleen ($${{\text{M}}}_{{\text{seg}}+{\text{spleen}}})$$ M seg + spleen ) to assess the impact on segment contouring. Models were trained, validated, and tested on 160 ($${{\text{C}}}_{{\text{RTTrain}}}$$ C RTTrain ), 40 ($${{\text{C}}}_{{\text{RTVal}}}$$ C RTVal ), 33 ($${{\text{C}}}_{{\text{LS}}}$$ C LS ), 25 (CCH) and 20 (CPVE) CECT of LC patients. $${{\text{M}}}_{{\text{nnU}}-{\text{Net}}}$$ M nnU - Net outperformed $${{\text{M}}}_{{\text{paU}}-{\text{Net}}}$$ M paU - Net across all segments with median differences in Dice similarity coefficients (DSC) ranging 0.03–0.05 (p < 0.05). $${{\text{M}}}_{{\text{seg}}+{\text{spleen}}}$$ M seg + spleen , and $${{\text{M}}}_{{\text{nnU}}-{\text{Net}}}$$ M nnU - Net were not statistically different (p > 0.05), however, both were slightly better than $${{\text{M}}}_{{\text{Vess}}}$$ M Vess by DSC up to 0.02. The final model, $${{\text{M}}}_{{\text{seg}}+{\text{spleen}}}$$ M seg + spleen , showed a mean DSC of 0.89, 0.82, 0.88, 0.87, 0.96, and 0.95 for segments 1, 2, 3, 4, 5–8, and spleen, respectively on entire test sets. Qualitatively, more than 85% of cases showed a Likert score $$\ge$$ 3 on test sets. Our final model provides clinically acceptable contours of liver segments and spleen which are usable in treatment planning.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3