Conformational transition induced in the aspartate:alanine antiporter by l-Ala binding

Author:

Suzuki Satomi,Chiba Fumika,Kimura Takuya,Kon Nanase,Nanatani Kei,Abe Keietsu

Abstract

AbstractAn aspartate:alanine antiporter (AspT) from the lactic acid bacterium Tetragenococcus halophilus catalyzes the electrogenic aspartate1-:alanine0 exchange reaction. Our previous kinetic analyses of transport reactions mediated by AspT in reconstituted liposomes suggested that, although the substrate transport reactions are physiologically coupled, the putative binding sites of l-aspartate (-Asp) and l-alanine (-Ala) are independently located on AspT. By using the fluorescent probe Oregon Green maleimide (OGM), which reacts specifically with cysteine, we also found that the presence of l-Asp changes the conformation of AspT. In this study, we conducted an OGM labeling assay in the presence of l-Ala. The labeling efficiency of single cysteine mutants (G62C and P79C) in transmembrane helix 3 of the AspT showed novel patterns depending on the presence of l-Ala or analogs. A concentration-dependent shift of AspT from the conformation in the presence of one substrate to that specific to the substrate added subsequently (l-Ala or l-Asp) was observed. Moreover, size-exclusion-chromatography-based thermostability assays indicated that the thermal stability of AspT in the presence of l-Ala differed from that in the presence of l-Asp. From these results, we concluded that l-Ala binding yields a conformation different from the apo or l-Asp binding conformations.

Funder

Japan Society for the Promotion of Science

Grants-in-Aid for Scientific Research program

Fostering Joint International Research program

Kato Memorial Bioscience Foundation

Noda Institute for Scientific Research

Grants-in-Aid for Exploratory Research program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3