Establishment and validation of a nomogram model for riskprediction of hepatic encephalopathy: a retrospective analysis

Author:

Yao Chun,Huang Liangjiang,Wang Meng,Mao Dewen,Wang Minggang,Zheng Jinghui,Long Fuli,Huang Jingjing,Liu Xirong,Zhang Rongzhen,Xie Jiacheng,Cheng Chen,Yao Fan,Huang Guochu

Abstract

AbstractTo establish a high-quality, easy-to-use, and effective risk prediction model for hepatic encephalopathy, to help healthcare professionals with identifying people who are at high risk of getting hepatic encephalopathy, and to guide them to take early interventions to reduce the occurrence of hepatic encephalopathy. Patients (n = 1178) with decompensated cirrhosis who attended the First Affiliated Hospital of Guangxi University of Chinese Medicine between January 2016 and June 2022 were selected for the establishment and validation of a nomogram model for risk prediction of hepatic encephalopathy. In this study, we screened the risk factors for the development of hepatic encephalopathy in patients with decompensated cirrhosis by univariate analysis, LASSO regression and multifactor analysis, then established a nomogram model for predicting the risk of getting hepatic encephalopathy for patients with decompensated cirrhosis, and finally performed differentiation analysis, calibration analysis, clinical decision curve analysis and validation of the established model. A total of 1178 patients with decompensated cirrhosis who were hospitalized and treated at the First Affiliated Hospital of Guangxi University of Chinese Medicine between January 2016 and June 2022 were included for modeling and validation. Based on the results of univariate analysis, LASSO regression analysis and multifactor analysis, a final nomogram model with age, diabetes, ascites, spontaneous peritonitis, alanine transaminase, and blood potassium as predictors of hepatic encephalopathy risk prediction was created. The results of model differentiation analysis showed that the AUC of the model of the training set was 0.738 (95% CI 0.63–0.746), while the AUC of the model of the validation set was 0.667 (95% CI 0.541–0.706), and the two AUCs indicated a good discrimination of this nomogram model. According to the Cut-Off value determined by the Jorden index, when the Cut-Off value of the training set was set at 0.150, the sensitivity of the model was 72.8%, the specificity was 64.8%, the positive predictive value was 30.4%, and the negative predictive value was 91.9%; when the Cut-Off value of the validation set was set at 0.141, the sensitivity of the model was 69.7%, the specificity was 57.3%, the positive predictive value was 34.5%, and the negative predictive value was 84.7%. The calibration curve and the actual events curve largely overlap at the diagonal, indicating that the prediction with this model has less error. The Hosmer–Lemeshow test for goodness of fit was also applied, and the results showed that for the training set, χ2 = 1.237587, P = 0.998, and for the validation set, χ2 = 31.90904, P = 0.0202, indicating that there was no significant difference between the predicted and actual observed values. The results of the clinical decision curve analysis showed that the model had a good clinical benefit, compared with the two extreme clinical scenarios (all patients treated or none treated), and the model also had a good clinical benefit in the validation set. This study showed that aged over 55 years, complications of diabetes, ascites, and spontaneous bacterial peritonitis, abnormal glutamate aminotransferase and abnormal blood potassium are independent risks indicators for the development of hepatic encephalopathy in patients with decompensated cirrhosis. The nomogram model based on the indicators mentioned above can effectively and conveniently predict the risk of developing hepatic encephalopathy in patients with decompensated cirrhosis. The nomogram model established on this study can help clinical healthcare professionals to timely and early identify patients with high risk of developing hepatic encephalopathy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3