Effects of 5G-modulated 3.5 GHz radiofrequency field exposures on HSF1, RAS, ERK, and PML activation in live fibroblasts and keratinocytes cells
-
Published:2023-05-23
Issue:1
Volume:13
Page:
-
ISSN:2045-2322
-
Container-title:Scientific Reports
-
language:en
-
Short-container-title:Sci Rep
Author:
Joushomme Alexandre,Orlacchio Rosa,Patrignoni Lorenza,Canovi Anne,Chappe Yann Loïck,Poulletier De Gannes Florence,Hurtier Annabelle,Garenne André,Lagroye Isabelle,Moisan François,Cario Muriel,Lévêque Philippe,Arnaud-Cormos Delia,Percherancier Yann
Abstract
AbstractThe potential health risks of exposure to radiofrequency electromagnetic fields from mobile communications technologies have raised societal concerns. Guidelines have been set to protect the population (e.g. non-specific heating above 1 °C under exposure to radiofrequency fields), but questions remain regarding the potential biological effects of non-thermal exposures. With the advent of the fifth generation (5G) of mobile communication, assessing whether exposure to this new signal induces a cellular stress response is one of the mandatory steps on the roadmap for a safe deployment and health risk evaluation. Using the BRET (Bioluminescence Resonance Energy-Transfer) technique, we assessed whether continuous or intermittent (5 min ON/ 10 min OFF) exposure of live human keratinocytes and fibroblasts cells to 5G 3.5 GHz signals at specific absorption rate (SAR) up to 4 W/kg for 24 h impact basal or chemically-induced activity of Heat Shock Factor (HSF), RAt Sarcoma virus (RAS) and Extracellular signal-Regulated Kinases (ERK) kinases, and Promyelocytic Leukemia Protein (PML), that are all molecular pathways involved in environmental cell-stress responses. The main results are (i), a decrease of the HSF1 basal BRET signal when fibroblasts cells were exposed at the lower SARs tested (0.25 and 1 W/kg), but not at the highest one (4 W/kg), and (ii) a slight decrease of As2O3 maximal efficacy to trigger PML SUMOylation when fibroblasts cells, but not keratinocytes, were continuously exposed to the 5G RF-EMF signal. Nevertheless, given the inconsistency of these effects in terms of impacted cell type, effective SAR, exposure mode, and molecular cell stress response, we concluded that our study show no conclusive evidence that molecular effects can arise when skin cells are exposed to the 5G RF-EMF alone or with a chemical stressor.
Funder
Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail
Conseil Régional Aquitaine
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference56 articles.
1. Gopal, B. G. A comparative study on 4G and 5G technology for wireless applications. IOSR J. Electron. Commun. Eng. (IOSR-JECE) 10, 67–72 (2015).
2. Mahmud, M. Cellular mobile technologies (1G to 5G) and massive MIMO. Int. J. Sci. Res. (IJSR) 8, 929–937 (2019).
3. ICNIRP. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 118, 483–524 (2020).
4. Vecchia, P. et al. Exposure to High Frequency Electromagnetic Fields, Biological Effects and Health Consequences (100 kHz-300 GHz) (ICNIRP, 2009).
5. SSM’s Scientific Council on Electromagnetic Fields. Recent Research on EMF and Health Risk - Fourteenth report from SSM’s Scientific Council on Electromagnetic Fields, 2019. https://www.stralsakerhetsmyndigheten.se/contentassets/47542ee6308b4c76b1d25ae0adceca15/2020-04-recent-research-on-emf-and-health-risk---fourteenth-report-from-ssms-scientific-council-on-electromagnetic-fields-2019.pdf (2020).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献