An interpretable transformer network for the retinal disease classification using optical coherence tomography

Author:

He Jingzhen,Wang Junxia,Han Zeyu,Ma Jun,Wang Chongjing,Qi Meng

Abstract

AbstractRetinal illnesses such as age-related macular degeneration and diabetic macular edema will lead to irreversible blindness. With optical coherence tomography (OCT), doctors are able to see cross-sections of the retinal layers and provide patients with a diagnosis. Manual reading of OCT images is time-consuming, labor-intensive and even error-prone. Computer-aided diagnosis algorithms improve efficiency by automatically analyzing and diagnosing retinal OCT images. However, the accuracy and interpretability of these algorithms can be further improved through effective feature extraction, loss optimization and visualization analysis. In this paper, we propose an interpretable Swin-Poly Transformer network for performing automatically retinal OCT image classification. By shifting the window partition, the Swin-Poly Transformer constructs connections between neighboring non-overlapping windows in the previous layer and thus has the flexibility to model multi-scale features. Besides, the Swin-Poly Transformer modifies the importance of polynomial bases to refine cross entropy for better retinal OCT image classification. In addition, the proposed method also provides confidence score maps, assisting medical practitioners to understand the models’ decision-making process. Experiments in OCT2017 and OCT-C8 reveal that the proposed method outperforms both the convolutional neural network approach and ViT, with an accuracy of 99.80% and an AUC of 99.99%.

Funder

Shandong Provincial Natural Science Foundation

Shandong Provincial Natural Science Foundation joint Foundation

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3