Author:
Moon Cho-I.,Lee Jiwon,Yoo HyunJong,Baek YooSang,Lee Onseok
Abstract
AbstractPsoriasis is a chronic inflammatory skin disease that occurs in various forms throughout the body and is associated with certain conditions such as heart disease, diabetes, and depression. The psoriasis area severity index (PASI) score, a tool used to evaluate the severity of psoriasis, is currently used in clinical trials and clinical research. The determination of severity is based on the subjective judgment of the clinician. Thus, the disease evaluation deviations are induced. Therefore, we propose optimal algorithms that can effectively segment the lesion area and classify the severity. In addition, a new dataset on psoriasis was built, including patch images of erythema and scaling. We performed psoriasis lesion segmentation and classified the disease severity. In addition, we evaluated the best-performing segmentation method and classifier and analyzed features that are highly related to the severity of psoriasis. In conclusion, we presented the optimal techniques for evaluating the severity of psoriasis. Our newly constructed dataset improved the generalization performance of psoriasis diagnosis and evaluation. It proposed an optimal system for specific evaluation indicators of the disease and a quantitative PASI scoring method. The proposed system can help to evaluate the severity of localized psoriasis more accurately.
Funder
National Research Foundation of Korea(NRF) funded by the Ministry of Education
the National Research Foundation of Korea (NRF) funded by the Korea government
Soonchunhyang University Research Fund
Publisher
Springer Science and Business Media LLC
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献