Interpretable deep learning for diagnosis of fungal and acanthamoeba keratitis using in vivo confocal microscopy images

Author:

Essalat Mahmoud,Abolhosseini Mohammad,Le Thanh Huy,Moshtaghion Seyed Mohamadmehdi,Kanavi Mozhgan Rezaei

Abstract

AbstractInfectious keratitis refers to a group of corneal disorders in which corneal tissues suffer inflammation and damage caused by pathogenic infections. Among these disorders, fungal keratitis (FK) and acanthamoeba keratitis (AK) are particularly severe and can cause permanent blindness if not diagnosed early and accurately. In Vivo Confocal Microscopy (IVCM) allows for imaging of different corneal layers and provides an important tool for an early and accurate diagnosis. In this paper, we introduce the IVCM-Keratitis dataset, which comprises of a total of 4001 sample images of AK and FK, as well as non-specific keratitis (NSK) and healthy corneas classes. We use this dataset to develop multiple deep-learning models based on Convolutional Neural Networks (CNNs) to provide automated assistance in enhancing the diagnostic accuracy of confocal microscopy in infectious keratitis. Densenet161 had the best performance among these models, with an accuracy, precision, recall, and F1 score of 93.55%, 92.52%, 94.77%, and 96.93%, respectively. Our study highlights the potential of deep learning models to provide automated diagnostic assistance for infectious keratitis via confocal microscopy images, particularly in the early detection of AK and FK. The proposed model can provide valuable support to both experienced and inexperienced eye-care practitioners in confocal microscopy image analysis, by suggesting the most likely diagnosis. We further demonstrate that these models can highlight the areas of infection in the IVCM images and explain the reasons behind their diagnosis by utilizing saliency maps, a technique used in eXplainable Artificial Intelligence (XAI) to interpret these models.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3