Beyond the spore, the exosporium sugar anthrose impacts vegetative Bacillus anthracis gene regulation in cis and trans

Author:

Norris Michael H.,Bluhm Andrew P.,Metrailer Morgan C.,Jiranantasak Treenate,Kirpich Alexander,Hadfield Ted,Ponciano Jose Miguel,Blackburn Jason K.

Abstract

AbstractThe Bacillus anthracis exosporium nap is the outermost portion of spore that interacts with the environment and host systems. Changes to this layer have the potential to impact wide-ranging physiological and immunological processes. The unique sugar, anthrose, normally coats the exosporium nap at its most distal points. We previously identified additional mechanisms rendering B. anthracis anthrose negative. In this work, several new antB. anthracis strains are identified and the impact of anthrose negativity on spore physiology is investigated. We demonstrate that live-attenuated Sterne vaccines as well as culture filtrate anthrax vaccines generate antibodies targeting non-protein components of the spore. The role of anthrose as a vegetative B. anthracis Sterne signaling molecule is implicated by luminescent expression strain assays, RNA-seq experiments, and toxin secretion analysis by western blot. Pure anthrose and the sporulation-inducing nucleoside analogue decoyinine had similar effects on toxin expression. Co-culture experiments demonstrated gene expression changes in B. anthracis depend on intracellular anthrose status (cis) in addition to anthrose status of extracellular interactions (trans). These findings provide a mechanism for how a unique spore-specific sugar residue affects physiology, expression and genetics of vegetative B. anthracis with impacts on the ecology, pathogenesis, and vaccinology of anthrax.

Funder

Defense Threat Reduction Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3