Detection of Mycobacterium tuberculosis multiple strains in sputum samples from patients with pulmonary tuberculosis in south western Uganda using MIRU-VNTR

Author:

Micheni Lisa Nkatha,Kassaza Kennedy,Kinyi Hellen,Ntulume Ibrahim,Bazira Joel

Abstract

AbstractInfections with multiple strains of Mycobacterium tuberculosis are now widely recognized as a common occurrence. Identification of patients infected with multiple strains provides both insight into the disease dynamics and the epidemiology of tuberculosis. Analysis of Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeats (MIRU-VNTR) has been shown to be highly sensitive in detecting multiple M. tuberculosis strains even in sputum. The goal of this study was to identify cases of multiple M. tuberculosis strain infections among patients diagnosed with pulmonary tuberculosis in Southwestern Uganda and assessment of factors associated with multiple strain infections. DNA extracted directly from 78 sputum samples, each from an individual patient, was analyzed using the standard 24 loci MIRU-VNTR typing. Five (6.4%) of the 78 patients were infected with multiple strains of M. tuberculosis with all of them being the newly diagnosed cases while two-thirds of them were co-infected with HIV. Exact regression analysis projected that the natives were more likely to harbor multiple strains (OR; 0.981, 95% CI 0–7.926) as well as those with a high microbial load (OR; 0.390, 95% CI 0–3.8167). Despite these findings being not statistically significant due to the small sample size, this points to a critical component of disease dynamics that has clinical implications and emphasizes a need for a study using a larger cohort. It is also essential to study the potential factors associated with higher risk of exposure to newly diagnosed and HIV positive patients at the community level. In addition, our ability to detect multiple M. tuberculosis strains using the standard 24 loci MIRU-VNTR typing especially with allelic diversity in loci 2059 and 3171, which are excluded from the 15-locus MIRU-VNTR, lead us to recommend the use of this genotyping technique, especially in areas with tuberculosis endemicity similar to this study.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference48 articles.

1. WHO. Global Tuberculosis Report 2016 (World Health Organization, 2016). https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004.

2. WHO. Global Tuberculosis Report 2018 (World Health Organization, 2018). https://doi.org/10.1177/2165079915607875.

3. WHO. Global Tuberculosis Report 2019 (World Health Organization, 2019).

4. McIvor, A., Koornhof, H. & Kana, B. D. Relapse, re-infection and mixed infections in tuberculosis disease. Pathog. Dis. 75, 1–16 (2017).

5. Stead, W. W. Pathogenesis of a first episode of chronic pulmonary tuberculosis in man: recrudescence of residuals of the primary infection or exogenous reinfection?. Am. Rev. Respir. Dis. 95, 729–745 (1967).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3