Author:
Yao Jingwen,Hagiwara Akifumi,Raymond Catalina,Shabani Soroush,Pope Whitney B.,Salamon Noriko,Lai Albert,Ji Matthew,Nghiemphu Phioanh L.,Liau Linda M.,Cloughesy Timothy F.,Ellingson Benjamin M.
Abstract
AbstractCo-deletion of 1p/19q is a hallmark of oligodendroglioma and predicts better survival. However, little is understood about its metabolic characteristics. In this study, we aimed to explore the extracellular acidity of WHO grade II and III gliomas associated with 1p/19q co-deletion. We included 76 glioma patients who received amine chemical exchange saturation transfer (CEST) imaging at 3 T. Magnetic transfer ratio asymmetry (MTRasym) at 3.0 ppm was used as the pH-sensitive CEST biomarker, with higher MTRasym indicating lower pH. To control for the confounder factors, T2 relaxometry and l-6-18F-fluoro-3,4-dihydroxyphenylalnine (18F-FDOPA) PET data were collected in a subset of patients. We found a significantly lower MTRasym in 1p/19q co-deleted gliomas (co-deleted, 1.17% ± 0.32%; non-co-deleted, 1.72% ± 0.41%, P = 1.13 × 10−7), while FDOPA (P = 0.92) and T2 (P = 0.61) were not significantly affected. Receiver operating characteristic analysis confirmed that MTRasym could discriminate co-deletion status with an area under the curve of 0.85. In analysis of covariance, 1p/19q co-deletion status was the only significant contributor to the variability in MTRasym when controlling for age and FDOPA (P = 2.91 × 10−3) or T2 (P = 8.03 × 10−6). In conclusion, 1p/19q co-deleted gliomas were less acidic, which may be related to better prognosis. Amine CEST-MRI may serve as a non-invasive biomarker for identifying 1p/19q co-deletion status.
Funder
National Cancer Institute
American Cancer Society
Publisher
Springer Science and Business Media LLC
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献