Association between organic nitrogen substrates and the optical purity of d-lactic acid during the fermentation by Sporolactobacillus terrae SBT-1

Author:

Thitiprasert Sitanan,Jaiaue Phetcharat,Amornbunchai Nichakorn,Thammakes Jesnipit,Piluk Jirabhorn,Srimongkol Piroonporn,Tanasupawat Somboon,Thongchul Nuttha

Abstract

AbstractThe development of biotechnological lactic acid production has attracted attention to the potential production of an optically pure isomer of lactic acid, although the relationship between fermentation and the biosynthesis of highly optically pure d-lactic acid remains poorly understood. Sporolactobacillus terrae SBT-1 is an excellent d-lactic acid producer that depends on cultivation conditions. Herein, three enzymes responsible for synthesizing optically pure d-lactic acid, including d-lactate dehydrogenase (D-LDH; encoded by ldhDs), l-lactate dehydrogenase (L-LDH; encoded by ldhLs), and lactate racemase (Lar; encoded by larA), were quantified under different organic nitrogen sources and concentration to study the relationship between fermentation conditions and synthesis pathway of optically pure lactic acid. Different organic nitrogen sources and concentrations significantly affected the quantity and quality of d-lactic acid produced by strain SBT-1 as well as the synthetic optically pure lactic acid pathway. Yeast extract is a preferred organic nitrogen source for achieving high catalytic efficiency of d-lactate dehydrogenase and increasing the transcription level of ldhA2, indicating that this enzyme plays a major role in d-lactic acid formation in S. terrae SBT-1. Furthermore, lactate racemization activity could be regulated by the presence of d-lactic acid. The results of this study suggest that specific nutrient requirements are necessary to achieve a stable and highly productive fermentation process for the d-lactic acid of an individual strain.

Funder

Thailand Science research and Innovation Fund Chulalongkorn University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3