Transformation starts at the periphery of networks where pushback is less

Author:

van de Leemput Ingrid A.,Bascompte Jordi,Buddendorf Willem Bastiaan,Dakos Vasilis,Lever J. Jelle,Scheffer Marten,van Nes Egbert H.

Abstract

AbstractComplex systems ranging from societies to ecological communities and power grids may be viewed as networks of connected elements. Such systems can go through critical transitions driven by an avalanche of contagious change. Here we ask, where in a complex network such a systemic shift is most likely to start. Intuitively, a central node seems the most likely source of such change. Indeed, topological studies suggest that central nodes can be the Achilles heel for attacks. We argue that the opposite is true for the class of networks in which all nodes tend to follow the state of their neighbors, a category we call two-way pull networks. In this case, a well-connected central node is an unlikely starting point of a systemic shift due to the buffering effect of connected neighbors. As a result, change is most likely to cascade through the network if it spreads first among relatively poorly connected nodes in the periphery. The probability of such initial spread is highest when the perturbation starts from intermediately connected nodes at the periphery, or more specifically, nodes with intermediate degree and relatively low closeness centrality. Our finding is consistent with empirical observations on social innovation, and may be relevant to topics as different as the sources of originality of art, collapse of financial and ecological networks and the onset of psychiatric disorders.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3