Anticancer activity of lactoferrin-coated biosynthesized selenium nanoparticles for combating different human cancer cells via mediating apoptotic effects

Author:

El‑Fakharany Esmail M.,Abu‑Serie Marwa M.,Ibrahim Amany,Eltarahony Marwa

Abstract

AbstractThe present study aims to develop a novel nanocombination with high selectivity against several invasive cancer cells, sparing normal cells and tissues. Bovine lactoferrin (bLF) has recently captured the interest of numerous medical fields owing to its biological activities and well-known immunomodulatory effects. BLF is an ideal protein to be encapsulated or adsorbed into selenium nanocomposites (Se NPs) in order to produce stable nanocombinations with potent anticancer effects and improved immunological functions. The biosynthesis of the functionalized Se NPs was achieved using Rhodotorula sp. strain MZ312359 via a simultaneous bio-reduction approach to selenium sodium salts. The physicochemical properties of Se NPs using SEM, TEM, FTIR, UV Vis, XRD, and EDX confirmed the formation of uniform agglomerated spheres with a size of 18–40 nm. Se NPs were successfully embedded in apo-LF (ALF), forming a novel nanocombination of ALF-Se NPs with a spherical shape and an average nanosize of less than 200 nm. The developed ALF-Se NPs significantly displayed an effective anti-proliferation efficiency against many cancer cells, including MCF-7, HepG-2, and Caco-2 cell lines, as compared to Se NPs and ALF in free forms. ALF-Se NPs showed a significant selectivity impact (> 64) against all treated cancer cells at IC50 63.10 ≤ μg/mL, as well as the strongest upregulation of p53 and suppression of Bcl-2, MMP-9, and VEGF genes. Besides, ALF-Se NPs were able to show the maximum activation of transcrition of key redox mediator (Nrf2) with suppression in reactive oxygen species (ROS) levels inside all treated cancer cells. This study demonstrates that this novel nanocombination of ALF-Se NPs has superior selectivity and apoptosis-mediating anticancer activity over free ALF or individual form of Se NPs.

Funder

City of Scientific Research and Technological Applications

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3