Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy

Author:

Dong Youzi,Zhao Quanlin,Wang Yuguo

Abstract

AbstractTo explore the mechanism of the Astragalus membranaceous (AM)-Angelica sinensis (AS) compound in the treatment of diabetic nephropathy (DN) we used network pharmacology and molecular docking. Screen the components and targets of the AM-AS compound in the TCMSP and the BATMAN-TCM, and establish a component-target interaction network by Cytoscape 3.7.2. After searching relevant targets of DN in related databases, the common targets of the AM-AS compound and DN were obtained by comparison. Gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis were performed through David database. Molecular docking was performed by PyMoL2.3.0 and AutoDock Vina software. After screening, 142 main targets of the AM-AS compound in the treatment of DN have been identified. Target network was established and the topology of PPI network was analyzed. KEGG pathway enrichment analysis shows that these targets are related to apoptosis, oxidative stress, inflammation, insulin resistance, etc. Molecular docking shows that the target proteins have good combinations with the main active components of the AM-AS compound. AM-AS compound may treat DN by acting on VEGFA, TP53, IL-6, TNF, MARK1, etc., and regulate apoptosis, oxidative stress, inflammation, glucose, and lipid metabolism processes. The in vivo study results suggest that AM-AS compound can significantly reduce the FBG level of diabetic rats, increase the level of INS, improve renal functions, reduce urinary proteins, inhibit glycogen deposition, granulocyte infiltration and collagen fiber proliferation in renal tissue, and restrain the progress of DN. In vivo study combined with network pharmacology and molecular docking methods provides new ideas for the pathogenesis and treatments of DN.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3