Insight into the LED-assisted deposition of platinum nanoparticles on the titania surface: understanding the effect of LEDs

Author:

Kubiak Adam,Varma Naisargi,Sikorski Marek

Abstract

AbstractThis paper proposes a novel LED-assisted deposition of platinum nanoparticles on the titania surface. For the first time, this process was supported by a UV-LED solution. We used two light sources with different wavelengths (λmax = 365 and 395 nm), and power (P = 1, 5, and 10 W) because the photodeposition process based on LEDs has not been defined. The TiO2–Pt material was discovered to be nano-crystalline anatase particles with nano-platinum particles deposited on the surface of titanium dioxide. Furthermore, the luminescence intensity decreased when Pt was added to TiO2, indicating that charge carrier recombination was reduced. The spectra matching of the photocatalyst and LED reactor was performed for the first time in this work. We proposed a convenient LED reactor that focused light in the range of 350–450 nm, allowing us to effectively use photo-oxidative properties of TiO2–Pt materials in the process of removing 4-chlorophenol. In the presented work, the LED light source plays a dual role. They first induce the platinum photodeposition process, before becoming an important component of tailored photoreactors, which is an important innovative aspect of this research.

Funder

Uniwersytet im. Adama Mickiewicza w Poznaniu

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3