Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology

Author:

Eminaga Okyaz,Abbas Mahmoud,Kunder Christian,Tolkach Yuri,Han Ryan,Brooks James D.,Nolley Rosalie,Semjonow Axel,Boegemann Martin,West Robert,Long Jin,Fan Richard E.,Bettendorf Olaf

Abstract

AbstractProstate cancer pathology plays a crucial role in clinical management but is time-consuming. Artificial intelligence (AI) shows promise in detecting prostate cancer and grading patterns. We tested an AI-based digital twin of a pathologist, vPatho, on 2603 histological images of prostate tissue stained with hematoxylin and eosin. We analyzed various factors influencing tumor grade discordance between the vPatho system and six human pathologists. Our results demonstrated that vPatho achieved comparable performance in prostate cancer detection and tumor volume estimation, as reported in the literature. The concordance levels between vPatho and human pathologists were examined. Notably, moderate to substantial agreement was observed in identifying complementary histological features such as ductal, cribriform, nerve, blood vessel, and lymphocyte infiltration. However, concordance in tumor grading decreased when applied to prostatectomy specimens (κ = 0.44) compared to biopsy cores (κ = 0.70). Adjusting the decision threshold for the secondary Gleason pattern from 5 to 10% improved the concordance level between pathologists and vPatho for tumor grading on prostatectomy specimens (κ from 0.44 to 0.64). Potential causes of grade discordance included the vertical extent of tumors toward the prostate boundary and the proportions of slides with prostate cancer. Gleason pattern 4 was particularly associated with this population. Notably, the grade according to vPatho was not specific to any of the six pathologists involved in routine clinical grading. In conclusion, our study highlights the potential utility of AI in developing a digital twin for a pathologist. This approach can help uncover limitations in AI adoption and the practical application of the current grading system for prostate cancer pathology.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3