Evaluation of the optical and magnetic properties of novel Nd0.9Zn0.1FeO3 perovskite nanoparticles and their adsorption of Pb2+ ions from water

Author:

Arman M. M.

Abstract

AbstractNd0.9Zn0.1FeO3 was prepared in a single-phase with an average crystallite size of 25.82 nm using a citrate combustion technique. The energy dispersive X-ray assures the chemical formula of the sample. The elemental mapping of Zn-doped NdFeO3 illustrates the good homogeneous distribution of the elements in the sample. Nd0.9Zn0.1FeO3 has antiferromagnetic properties with weak ferromagnetic components and has good UV absorbance. The values of the band gap for the direct and indirect transitions are 1.473 eV and 1.250 eV, respectively. The adsorption of nickel(II), cobalt(II), chrome(VI), cadmium(II), and lead(II) ions has been studied at pH 7. The highest removal efficiency (η = 73.72%) was observed for the lead ions from water. The current study has examined the kinetics, recoveries, and mechanisms of utilizing Nd0.90Zn0.10FeO3 to remove Pb2+ ions from water. The optimum conditions for the absorbing Pb2+ are pH 7 and a contact time of 60 min. The Freundlich isotherm model is the best model for the absorption of Pb2+ ions. While, the pseudo-second-order kinetic model describes the kinetic adsorption data. The sample has a good efficiency for removing Pb2+ ions from water several times.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3