MicroRNA-941 regulates the proliferation of breast cancer cells by altering histone H3 Ser 10 phosphorylation

Author:

Surapaneni Sunil Kumar,Bhat Zahid Rafiq,Tikoo Kulbhushan

Abstract

AbstractBreast cancer including triple negative breast cancer (TNBC) represents an important clinical challenge, as these tumours often develop resistance to conventional chemotherapeutics. MicroRNAs play a crucial role in cell-cycle regulation, differentiation, apoptosis, and migration. Herein, we performed Affymetrix Gene Chip miRNA 4.0 microarray and observed differential regulation of miRNAs (75 upregulated and 199 downregulated) in metastatic MDA-MB-231 cells as compared to immortalized human non-tumorigenic breast epithelial (MCF-10A) cells. MicroRNA-941 was significantly upregulated in MDA-MB-231 cells (almost nine-fold increase) in comparison to MCF-10A cells. Transfection of MiRNA-941 inhibitor significantly decreased the proliferation and migration of MDA-MB-231 cells by altering the expressions of p21, Cyclin D1, PP2B-B1, E-cadherin and MMP-13. Interestingly, we provide first evidence that inhibiting miR-941 prevents cell proliferation and phosphorylation of histone H3 at Ser10 residue. Xenograft model of breast cancer was developed by subcutaneous injection of MDA-MB-231 cells into the mammary fat pad of female athymic nude mice (Crl:NU-Foxn1nu). The tumours were allowed to grow to around 60 mm3, thereafter which we divided the animals into seven groups (n = 5). Notably, intratumoral injection of miR-941 inhibitor significantly abolished the tumour growth in MDA-MB-231 xenograft model. 5-Fluorouracil (10 mg/kg, i.p.) was used as positive control in our study. To the best of our knowledge, we report for the first time that targeting miR-941 improves the sensitivity of MDA-MB-231 cells to 5-fluorouracil. This can be of profound clinical significance, as it provides novel therapeutic approach for treating variety of cancers (overexpressing miRNA-941) in general and breast cancers in particular.

Funder

National Institute of Pharmaceutical Education and Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3