Self-similarity study based on the particle sizes of coal-series diatomite

Author:

Cheng Liang,Wang Guangming,Ma Zhijun,Guo Hao,Gao Ye,Zhang Qi,Gao Jing,Fu Hanghang

Abstract

AbstractCoal-series diatomite (CSD) is widely distributed in China and has poor functional and structural properties and exhibits limited utilization of high value-added materials, resulting in a serious waste of resources and tremendous pressure on the environment. Moreover, due to differences in the mineralogical characteristics of CSD, different particle size scales (PSSs) have different functional structures and exhibit different self-similarities. In this study, we took CSD as the research object and PSS as the entry point and carried out a self-similarity study based on gas adsorption and an image processing method to illustrate the microstructures and self-similarities of different PSSs. The results showed that the pore structure of the CSD was dominated by mesopores and macropores and basically lacked micropores. The fractal dimensions were calculated with the Frenkel-Haisey-Hill (FHH) model and Menger model, and the DF1 values for − 0.025 mm and − 2 mm were 2.51 and 2.48, respectively, and the DM1 values were 3.75 and 3.79, respectively, indicating that the mesopore structure of the fine PSS was complex, whereas macropores were present in the coarse PSS. MATLAB was programmed to obtain grayscale thresholds, binarized images, grayscale histograms, three-dimensional (3D) reconstruction images and box dimensions, which enabled us to observe the microstructures and self-similarities of the CSD. Self-similarity studies based on particle sizes are very important for functional application of CSD.Please note that article title mismatch between MS and JS we have followed MS, kindly check and cofirm.Yes, I have checked and confirmed.Kindly check and confirm corresponding author mail id are correctly identified.Yes, I have checked and confirmed.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3