Novel miRNA signature for predicting the stage of hepatocellular carcinoma

Author:

Yerukala Sathipati Srinivasulu,Ho Shinn-Ying

Abstract

AbstractHepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide. Recently, microRNAs (miRNAs) are reported to be altered and act as potential biomarkers in various cancers. However, miRNA biomarkers for predicting the stage of HCC are limitedly discovered. Hence, we sought to identify a novel miRNA signature associated with cancer stage in HCC. We proposed a support vector machine (SVM)-based cancer stage prediction method, SVM-HCC, which uses an inheritable bi-objective combinatorial genetic algorithm for selecting a minimal set of miRNA biomarkers while maximizing the accuracy of predicting the early and advanced stages of HCC. SVM-HCC identified a 23-miRNA signature that is associated with cancer stages in patients with HCC and achieved a 10-fold cross-validation accuracy, sensitivity, specificity, Matthews correlation coefficient, and area under the receiver operating characteristic curve (AUC) of 92.59%, 0.98, 0.74, 0.80, and 0.86, respectively; and test accuracy and test AUC of 74.28% and 0.73, respectively. We prioritized the miRNAs in the signature based on their contributions to predictive performance, and validated the prognostic power of the prioritized miRNAs using Kaplan–Meier survival curves. The results showed that seven miRNAs were significantly associated with prognosis in HCC patients. Correlation analysis of the miRNA signature and its co-expressed miRNAs revealed that hsa-let-7i and its 13 co-expressed miRNAs are significantly involved in the hepatitis B pathway. In clinical practice, a prediction model using the identified 23-miRNA signature could be valuable for early-stage detection, and could also help to develop miRNA-based therapeutic strategies for HCC.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3