Application of distributed lag models and spatial analysis for comparing the performance of the COVID-19 control decisions in European countries

Author:

Hadianfar Ali,Rastaghi Sedigheh,Tabesh Hamed,Saki Azadeh

Abstract

AbstractOver the past three years, the COVID-19 outbreak has become a major worldwide problem, affecting the health systems and economies of countries. The mean delays, the expected time to observe the average effect of the number of new cases on the number of deaths, are gold times for decision-making regarding disease control and treatment facilities to reduce the fatality rate. The interest of the present study is estimating the mean delays and adjusted fatality rates of COVID-19 with the new application of Distributed Lag Models (DLM) and their spatial distributions. The daily cases and deaths data of COVID-19 for 39 European countries was obtained from two sources; the "European Centre for Disease Prevention and Control" and the "Our World in Data" database. The mean delay and the Adjusted Fatality Rate (AFR) for each country at three-time intervals; the first and subsequent peaks before and after vaccination were estimated by the Distributed Lag Models. The spatial analysis was applied to find the spatial correlation of the mean delays and adjusted fatality rates among European countries. In the three-time intervals, the first and the subsequent peaks before vaccination, and after vaccination, the median and interquartile range of the mean delays; and AFRs were: 1.1 (0.4, 3.2); 0.024 (0.016, 0.044), 9.2 (6.2, 12.40); 0.013 (0.005, 0.020) and 7.3 (4.4, 11.0); 0.001 (0.001, 0.005), respectively. In the subsequent peaks before vaccination, the mean delays considerably increased, and the AFRs decreased for most European countries. After vaccination, the AFRs decreased considerably. Except for the first peak, the spatial correlations of AFRs were not significant among neighboring countries. Consecutive outcomes will occur with delays in outbreaks of infectious disease. Also, the fatality rates for these outcomes should be adjusted on delays. Estimating the mean delays and adjusted fatality rates by Distributed lag Models and the spatial distributions of theme in outbreaks showed that prevention and medical policies after the first peak as well as vaccination were effective to reduce the fatality rate of COVID-19, but these effects were different between countries. These results recommended policymakers and governments assign prevention and medical resources more effectively.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3