Tumor relevant protein functional interactions identified using bipartite graph analyses

Author:

Venkatraman Divya Lakshmi,Pulimamidi Deepshika,Shukla Harsh G.,Hegde Shubhada R.

Abstract

AbstractAn increased surge of -omics data for the diseases such as cancer allows for deriving insights into the affiliated protein interactions. We used bipartite network principles to build protein functional associations of the differentially regulated genes in 18 cancer types. This approach allowed us to combine expression data to functional associations in many cancers simultaneously. Further, graph centrality measures suggested the importance of upregulated genes such as BIRC5, UBE2C, BUB1B, KIF20A and PTH1R in cancer. Pathway analysis of the high centrality network nodes suggested the importance of the upregulation of cell cycle and replication associated proteins in cancer. Some of the downregulated high centrality proteins include actins, myosins and ATPase subunits. Among the transcription factors, mini-chromosome maintenance proteins (MCMs) and E2F family proteins appeared prominently in regulating many differentially regulated genes. The projected unipartite networks of the up and downregulated genes were comprised of 37,411 and 41,756 interactions, respectively. The conclusions obtained by collating these interactions revealed pan-cancer as well as subtype specific protein complexes and clusters. Therefore, we demonstrate that incorporating expression data from multiple cancers into bipartite graphs validates existing cancer associated mechanisms as well as directs to novel interactions and pathways.

Funder

This work was supported by the intra-mural funding of the Institute of Bioinformatics and Applied Biotechnology by the Department of IT, BT and S

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3