A novel smart hybrid multimorph piezoelectric spherical shell cloak for broadband near-perfect underwater acoustic camouflage applications

Author:

Hasheminejad Seyyed M.,Kasaeisani Ali

Abstract

AbstractNon-visual auditory camouflage plays a major role in the art of underwater deception. In this work, a hybrid active/semi-active omnidirectional cloaking shell structure composed of alternate complementary piezoelectric and smart viscoelastic (PZT/SVE) actuator layers is proposed that can effectively conceal a three dimensional underwater macroscopic object from broadband incident sound waves. The smart hybrid structure incorporates a finite sequence of fully active parallel-connected multimorph PZT constraining layers inter-stacked with semi-active SVE core layers both of which are collaboratively operative in the framework of a Particle Swarm Optimized (PSO) multiple-input multiple-output active damping control (MIMO-ADC) scheme. The elasto-acoustic modeling of the problem is conducted by coupling the spatial state space methodology based on the classical three-dimensional exact piezoelasticity theory with the wave equations for the inner and outer acoustic domains. The acoustic cloaking performance of proposed configuration is evaluated for four distinct classes of highly functional SVE interlayer materials with tunable (field-dependent) rheological properties, namely, magnetorheological elastomer (MRE), shape memory polymer (SMP), electrorheological fluid (ERF), and magnetorheological shear thickening polishing fluid (MRSTPF). Extensive numerical results reveal significant broadband reductions of the far-field backscattering amplitude in the ($$\left|{f}_{\infty }\left(\theta =\pi ,{k}_{\text{ex}}{R}_{\text{ex }}\right)\right|)$$ f θ = π , k ex R ex ) as well as the percentage error of external cloaked field $$(\%\text{Err})$$ ( % Err ) by incorporating a sufficient number of smart multimorph PZT/SVE material layers. Furthermore, it is concluded that comparable low frequency acoustic cloaking effects is possible without expenditure of any external energy just by employing the entirely inactive MRSTPF-based cloak as an alternative to the semiactive or fully active multimorph PZT/SVE cloaks. The outcome of proposed study can advantageously serve as the first step towards practical development and experimental implementation of future high performance smart acoustic cloaking devices with expanded broadband near-perfect omnidirectional invisibility for three dimensional objects of diverse geometries.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3