An experimental study of foam-oil interactions for nonionic-based binary surfactant systems under high salinity conditions

Author:

Bello Ayomikun,Ivanova Anastasia,Bakulin Denis,Yunusov Timur,Rodionov Alexander,Burukhin Alexander,Cheremisin Alexey

Abstract

AbstractA key factor affecting foam stability is the interaction of foam with oil in the reservoir. This work investigates how different types of oil influence the stability of foams generated with binary surfactant systems under a high salinity condition. Foam was generated with binary surfactant systems, one composed of a zwitterionic and a nonionic surfactant, and the other composed of an anionic and a nonionic surfactant. Our results showed that the binary surfactant foams investigated are more tolerant under high salinity conditions and in the presence of oil. This was visually observed in our microscopic analysis and was further attributed to an increase in apparent viscosity achieved with binary surfactant systems, compared to single surfactant foams. To understand the influence of oil on foam stability, we performed a mechanistic study to investigate how these oils interact with foams generated with binary surfactants, focusing on their applicability under high salinity conditions. The generation and stability of foam are linked to the ability of the surfactant system to solubilize oil molecules. Oil droplets that solubilize in the micelles appear to destabilize the foam. However, oils with higher molecular weights are too large to be solubilized in the micelles, hence the molecules will have less ability to be transported out of the foam, so oil seems to stabilize the foam. Finally, we conducted a multivariate analysis to identify the parameters that influenced foam stability in different oil types, using the experimental data from our work. The results showed that the oil molecular weight, interfacial tension between the foaming liquid and the oil, and the spreading coefficient are the most important variables for explaining the variation in the data. By performing a partial least square regression, a linear model was developed based on these most important variables, which can be used to predict foam stability for subsequent experiments under the same conditions as our work.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3