Design and fabrication of electrochemical sensor based on NiO/Ni@C-Fe3O4/CeO2 for the determination of niclosamide

Author:

Darvishi Setayesh,Ensafi Ali A.,Mousaabadi Kimia Zarean

Abstract

AbstractIn this study, we aimed to enhance and accelerate the electrochemical properties of a glassy carbon-based voltammetric sensor electrode. This was achieved through the modification of the electrode using a nanocomposite derived from a metal–organic framework, which was embedded onto a substrate consisting of metal oxide nanoparticles. The final product was an electrocatalyst denoted as NiO/Ni@C-Fe3O4/CeO2, tailored for the detection of the drug niclosamide. Several techniques, including FT-IR, XRD, XPS, FE-SEM, TEM, and EDS, were employed to characterize the structure and morphology of this newly formed electroactive catalyst. Subsequently, the efficiency of this electrocatalyst was evaluated using cyclic voltammetry and electrochemical impedance spectroscopy techniques. Differential pulse voltammetry was also utilized to achieve heightened sensitivity and selectivity. A comprehensive exploration of key factors such as the catalyst quantity, optimal instrumental parameters, scan rate influence, and pH effect was undertaken, revealing a well-regulated reaction process. Furthermore, the sensor's analytical performance parameters were determined. This included establishing the linear detection range for the target compound within a specified concentration interval of 2.92 nM to 4.97 μM. The detection limit of 0.91 nM, repeatability of 3.1%, and reproducibility of 4.8% of the sensor were calculated, leading to the observation of favorable stability characteristics. Conclusively, the developed electrochemical sensor was successfully employed for the quantification of niclosamide in urine samples and niclosamide tablets. This application highlighted not only the sensor’s high selectivity but also the satisfactory and accurate outcomes obtained from these measurements.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3