Reservoir computing using self-sustained oscillations in a locally connected neural network

Author:

Kawai Yuji,Park Jihoon,Asada Minoru

Abstract

AbstractUnderstanding how the structural organization of neural networks influences their computational capabilities is of great interest to both machine learning and neuroscience communities. In our previous work, we introduced a novel learning system, called the reservoir of basal dynamics (reBASICS), which features a modular neural architecture (small-sized random neural networks) capable of reducing chaoticity of neural activity and of producing stable self-sustained limit cycle activities. The integration of these limit cycles is achieved by linear summation of their weights, and arbitrary time series are learned by modulating these weights. Despite its excellent learning performance, interpreting a modular structure of isolated small networks as a brain network has posed a significant challenge. Here, we investigate how local connectivity, a well-known characteristic of brain networks, contributes to reducing neural system chaoticity and generates self-sustained limit cycles based on empirical experiments. Moreover, we present the learning performance of the locally connected reBASICS in two tasks: a motor timing task and a learning task of the Lorenz time series. Although its performance was inferior to that of modular reBASICS, locally connected reBASICS could learn a time series of tens of seconds while the time constant of neural units was ten milliseconds. This work indicates that the locality of connectivity in neural networks may contribute to generation of stable self-sustained oscillations to learn arbitrary long-term time series, as well as the economy of wiring cost.

Funder

Japan Science and Technology Agency

New Energy and Industrial Technology Development Organization

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3