Formation of the junctions between lymph follicles in the Peyer's patches even before postweaning activation

Author:

Teshigahara Anri,Banba Yuri,Yoshida Hiromi,Kaji Mitsuji,Zhou Zhou,Koyama Nao,Sakai Yoshifumi,Karrow Niel A.,Ogasawara Kouetsu,Hirakawa Ryota,Islam Jahidul,Furukawa Mutsumi,Nochi Tomonori

Abstract

AbstractPeyer’s patches (PPs), which contain an abundance of B and T cells, play a key role in inducing pivotal immune responses in the intestinal tract. PPs are defined as aggregated lymph follicles, which consist of multiple lymph follicles (LFs) that may interact with each other in a synergistic manner. LFs are thought to be spherical in shape; however, the characteristics of their structure are not fully understood. To elucidate changes in the structure of PPs as individuals grow, we generated serial 2D sections from entire PPs harvested from mice at 2, 4, and 10 weeks of age and performed a 3D analysis using a software, Amira. Although the number of LFs in PPs was not changed throughout the experiment, the volume and surface area of LFs increased significantly, indicating that LFs in PPs develop continuously by recruiting immune cells, even after weaning. In response to the dramatic changes in the intestinal environment after weaning, the development of germinal centers (GCs) in LFs was observed at 4 and 10 weeks (but not 2 weeks) of age. In addition, GCs gradually began to form away from the center of LFs and close to the muscle layer where export lymphatic vessels develop. Importantly, each LF was joined to the adjacent LF; this feature was observed even in preweaning nonactivated PPs. These results suggest that PPs may have a unique organization and structure that enhance immune functions, allowing cells in LFs to have free access to adjacent LFs and egress smoothly from PPs to the periphery upon stimulation after weaning.

Funder

Japan Science and Technology Agency

Institute of Development, Aging and Cancer, Tohoku University

Resilience and Safety Studies, Tohoku University

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3