DNA methylation-mediated repression of microRNA-410 promotes the growth of human glioma cells and triggers cell apoptosis through its interaction with STAT3

Author:

Wenfu Zhang,Bin Luo,Binchan Rao,Jingling Luo,Zhenchang Wang,Zhengdi Wan,Lei Yang

Abstract

AbstractThis study's purpose was to confirm the observed underexpression of miRNA-410 in glioma tissues and several glioma cells by Quantitative RT-PCR. Our findings suggest that epigenetic alterations occurring at the promoter region of miR-410 may be responsible for the reduced expression of miR-410 in glioma. The occurrence of DNA methylation in the miR-410 promoter was verified to be more prevalent through glioma tissues contrasted to adjacent non-tumor brain tissues through the utilization of methylation-specific PCR and CpG bisulfite sequencing sites in the miR-410 promoter region. Accordantly, miR-410 expression in glioma cell lines was observed to be significantly lesser in comparison to that of the human fetal glial cell line. In addition, it was demonstrated through gain- and loss-of-function investigations that miR-410 exerts significant regulation over cell growth, cell cycle development, and glioma cell apoptosis. The findings of the Luciferase reporter assay and western blot analysis indicate that miR-410 has a direct effect on the 3’-UTR of signal transducer and activator of transcription 3 (STAT3), thereby inhibiting its expression within glioma cells. Besides, our clinical investigation indicates a negative association between miR-410 expression and STAT3 within the glioma tissues of humans. In aggregate, the data provided in this investigation indicates that miR-410 is subjected to underexpression via DNA methylation. Furthermore, it has been observed to perform its function as a tumor suppressor in glioma cells through direct targeting of STAT3. The previously mentioned results could potentially have significant implications for the advancement of a new therapeutic approach for treating glioma.

Funder

Natural Science Foundation of China

Self-funded project of Guangxi Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3