Author:
Youn Dong Hyuk,Tran Ngoc Minh,Kim Bong Jun,Kim Youngmi,Jeon Jin Pyeong,Yoo Hyojong
Abstract
AbstractThe catalytic performance and therapeutic effect of nanoparticles varies with shape. Here, we investigated and compared the therapeutic outcomes of ceria nanospheres (Ceria NSs) and ceria nanorods (Ceria NRs) in an in vivo study of mild traumatic brain injury (mTBI). In vivo TBI was induced in a mouse model of open head injury using a stereotaxic impactor. Outcomes including cytoprotective effects, cognitive function, and cerebral edema were investigated after retro-orbital injection of 11.6 mM of ceria nanoparticles. Ceria nanoparticles significantly reduced fluoro-jade B (FJB)-positive cells and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells, and restored mRNA levels of superoxide dismutase 1 (SOD1) and SOD2. They also decreased the cyclooxygenase-2 (COX-2) expression compared with the untreated control group. Comparing the two nanomaterials, Ceria NRs showed less stable and high-energy (100) and (110) planes, which increased the number of active sites. The Ce3+/Ce4+ molar ratio of Ceria NRs (0.40) was greater than that of Ceria NSs (0.27). Ceria NRs (0.059 ± 0.021) appeared to exhibit better anti-inflammatory effect than Ceria NSs (0.133 ± 0.024), but the effect was statistically insignificant (p = 0.190). Ceria nanoparticles also improved cognitive impairment following mTBI compared with the control group, but the effect did not differ significantly according to the nanoshape. However, Ceria NRs (70.1 ± 0.5%) significantly decreased brain water content compared with Ceria NSs (73.7 ± 0.4%; p = 0.0015), indicating a more effective reduction in brain edema (p = 0.0015). Compared with Ceria NSs, the Ceria NRs are more effective in alleviating cerebral edema following in vivo mTBI.
Funder
Ministry of education, Korea
Ministry of Science and ICT, MSICT
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Dewan, M. C. et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 1, 1–18 (2018).
2. Cruz-Haces, M. et al. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl. Neurodegener. 6, 20 (2017).
3. Ramos-Cejudo, J. et al. Traumatic brain injury and alzheimer’s disease: The cerebrovascular link. EBioMedicine 28, 21–30 (2018).
4. Carlson, K. et al. The Assessment and Treatment of Individuals with History of Traumatic Brain Injury and Post-traumatic Stress Disorder: A Systematic Review of the Evidence. (2009).
5. Flynn, F. G. Memory impairment after mild traumatic brain injury. Continuum 16, 79–109 (2010).
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献