An integrated Asian human SNV and indel benchmark established using multiple sequencing methods

Author:

Huang Chuanfeng,Shao LibinORCID,Qu Shoufang,Rao JunhuaORCID,Cheng Tao,Cao Zhisheng,Liu Sanyang,Hu Jie,Liang Xinming,Shang Ling,Chen Yangyi,Liang Zhikun,Zhang Jiezhong,Chen Peipei,Luo Donghong,Zhu Anna,Yu Ting,Zhang Wenxin,Fan Guangyi,Chen Fang,Huang Jie

Abstract

AbstractSequencing technologies have been rapidly developed recently, leading to the breakthrough of sequencing-based clinical diagnosis, but accurate and complete genome variation benchmark would be required for further assessment of precision medicine applications. Despite the human cell line of NA12878 has been successfully developed to be a variation benchmark, population-specific variation benchmark is still lacking. Here, we established an Asian human variation benchmark by constructing and sequencing a stabilized cell line of a Chinese Han volunteer. By using seven different sequencing strategies, we obtained ~3.88 Tb clean data from different laboratories, hoping to reach the point of high sequencing depth and accurate variation detection. Through the combination of variations identified from different sequencing strategies and different analysis pipelines, we identified 3.35 million SNVs and 348.65 thousand indels, which were well supported by our sequencing data and passed our strict quality control, thus should be high confidence variation benchmark. Besides, we also detected 5,913 high-quality SNVs which had 969 sites were novel and  located in the high homologous regions supported by long-range information in both the co-barcoding single tube Long Fragment Read (stLFR) data and PacBio HiFi CCS data. Furthermore, by using the long reads data (stLFR and HiFi CCS), we were able to phase more than 99% heterozygous SNVs, which helps to improve the benchmark to be haplotype level. Our study provided comprehensive sequencing data as well as the integrated variation benchmark of an Asian derived cell line, which would be valuable for future sequencing-based clinical development.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3