Cryovacuum setup for optical studies of astrophysical ice

Author:

Golikov Oleg,Yerezhep Darkhan,Akylbayeva Aigerim,Sokolov Dmitriy Yurievich,Korshikov Eugeniy,Nurmukan Assel,Aldiyarov Abdurakhman

Abstract

AbstractThis paper presents a cryovacuum setup for the study of substances under near-space conditions. The setup makes it possible to study the infrared spectra, refractive index, and density of substances that are condensed from the vapor phase onto a cooled substrate in the temperature range from 11 to 300 K. At the same time, it is possible to obtain the ultimate pressure of 1 × 10–10 Torr in the vacuum chamber. The presented setup is based on FTIR spectroscopy (the spectral measurement range is 400–7800 cm–1) and laser interference, through which the important physical and optical parameters are determined. A number of experiments allow us to point out that the data obtained using this setup correlate well with the experiments of other authors. Due to the non-directional deposition of substances from the vapor phase, the ice formed resembles the one formed under cosmic conditions as closely as possible, which makes the presented setup particularly valuable. The presented cryovacuum setup can be used for the interpretation of data obtained during astrophysical observations, providing a means to determine the properties of cosmic objects.

Funder

Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3