Medium-throughput zebrafish optogenetic platform identifies deficits in subsequent neural activity following brief early exposure to cannabidiol and Δ9-tetrahydrocannabinol

Author:

Kanyo Richard,Amin Md Ruhul,Locskai Laszlo F.,Bouvier Danika D.,Olthuis Alexandria M.,Allison W. Ted,Ali Declan W.

Abstract

AbstractIn light of legislative changes and the widespread use of cannabis as a recreational and medicinal drug, delayed effects of cannabis upon brief exposure during embryonic development are of high interest as early pregnancies often go undetected. Here, zebrafish embryos were exposed to cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) until the end of gastrulation (1–10 h post-fertilization) and analyzed later in development (4–5 days post-fertilization). In order to measure neural activity, we implemented Calcium-Modulated Photoactivatable Ratiometric Integrator (CaMPARI) and optimized the protocol for a 96-well format complemented by locomotor analysis. Our results revealed that neural activity was decreased by CBD more than THC. At higher doses, both cannabinoids could dramatically reduce neural activity and locomotor activity. Interestingly, the decrease was more pronounced when CBD and THC were combined. At the receptor level, CBD-mediated reduction of locomotor activity was partially prevented using cannabinoid type 1 and 2 receptor inhibitors. Overall, we report that CBD toxicity occurs via two cannabinoid receptors and is synergistically enhanced by THC exposure to negatively impact neural activity late in larval development. Future studies are warranted to reveal other cannabinoids and their receptors to understand the implications of cannabis consumption on fetal development.

Funder

SynAD postdoctoral fellowship Alzheimer Society of Alberta and Northwest Territories through their Hope for Tomorrow program and the University Hospital Foundation

Undergraduate studentships from Natural Sciences and Engineering Research Council

Alberta Prion Research Institute-Alberta Innovates BioSolutions

Alzheimer Society of Alberta and the Northwest Territories

Natural Sciences and Engineering Research Council of Canada

Alberta Innovates mCannabis

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3